클러스터링 알고리즘 썸네일형 리스트형 7-2. EM algorithm for K-means clustering 용어정의 EM algorithm for K-means clustering 1. 용어정의 피드백 후 작성예정입니다. 2. EM algorithm for K-means clustering D 크기의 차원을 가진 N개의 데이터가 있다고 가정하면, K-means Clustering은 이 데이터들의 분포를 K개의 집단으로 나누는 것이다. K개의 집단으로 구분하기 위해, 데이터셋에 대한 "Distortion measure" 를 구하고 이를 최소화하는데 여기서 "Distortion measure"는 아래의 수식으로 계산된다. 여기서 μ_k 는 K번째 Cluster에 관한 평균이고, r_nk는 n번째 데이터가 K 번째 Cluster에 존재하면 '1'의 값을 갖고 아닐 경우 '0'의 값을 갖는다. 결국, E.. 더보기 이전 1 다음